Sunday, 15 Sep 2024
You are here:

OPA setup

 

We offer Bachelor theses for the studies of Electrical Engineering and Physics of TU Vienna, as well as Project Works and Master or PhD/Doctoral theses as part of our research projects.

 

PhD/Doctoral theses

 

If you are interested in joining our team for a PhD/Doctoral work please contact Andrius Baltuska or Markus Zeiler.

We currently offer the following PhD theses:

XUV and mid-infrared pulse generation

 

 

Bachelor theses

 

We offer Bachelor theses in 3 different optics and laser related subjects. If you are interested, please contact the person(s) indicated below.

 


Topic Contact Person
1 Laser Engineering Audrius Pugzlys
2 Optical Metrology Markus Zeiler, Audrius Pugzlys
3 Optical methods in Material Science Markus Zeiler

 

Details with regards to content of a Bachelor theses can be adapted to your interests. Currently offered theses can be found in the TISS system of TU Vienna (Login required).

For all offered Bachelor theses the regulations of the Faculty of Electrical Engineering and Information Technology apply.

 

 

Master theses

 

The table below shows examples of possible Master thesis topics. Details with regards to content can be adapted to your interests.


Title Description Contact
1

Spektroskopie von kohärentem XUV-Licht, erzeugt mit kontrollierten infraroten Wellenformen

Intensive Femtosekunden-Laserpulse können in einem Gas die Emission von laser-artiger XUV Strahlung hervorrufen. Die Physik dahinter könnte man "extrem nicht-lineare Optik" nennen, meistens spricht man aber von Starkfeldphysik: es ist das elektrische Feld des Laserpulses anstatt nur die Intensität (Quadrat des Feldes), das die Wechselwirkung antreibt. Wir suchen motivierte Masterstudenten, die mitarbeiten wollen wenn wir infratrote Femtosekunden-Laserpulse mit nicht-sinusoidaler Wellenform herstellen und sie dann benutzen, um die Erzeugung von XUV-Strahlung in einem Gas direkt über die antreibende Wellenform zu kontrollieren. Die Laserpulse werden in einem optisch-parametrischen Verstärker mit angeschlossenem Interferometer erzeugt. Erzeugung und Detektion des XUV Lichtes findet unter Vakuum statt, und das verwendete XUV-Spektrometer ist eine Neubau, der ausgiebig getestet und charakterisiert werden muss. Andrius Baltuska
2

Construction and characterization of the frontend for mid-IR optical parametric amplifier

Recent developments in the strong field physics demand powerful mid-IR sources of ultrashort pulses. One of the techniques used for the generation of multi-millijoule femtosecond pulses in the mid-IR spectral region is an optical parametric (chirped pulse) amplification (OP(CP)A). The OP(CP)A relays on the generation of a weak broadband seed which subsequently is amplified in a parametric power amplifier pumped by a powerful pulsed laser. One of the major obstacles of this technique is a synchronization of the seed and pump pulses, which might be realized in both active and passive way. Recently in our laboratory we have developed a prototype of multistage mid-IR OPA generating ultra-broad femtosecond pulses in the mid-IR spectral range. The frontend of the OPA system was 5‑mJ, 200‑fs, 1030‑nm Yb:CaF2 laser, which was used to generate both seed and pump pulses. However the laser system is rather complicated and expensive and we believe that the frontend can be realized by using much cheaper, simple and reliable µJ-level Yb fiber laser amplifier. The amplifier will be used to generate both seed for the pump laser system operating at around 2µm and seed for the OP(CP)A tunable between 2.7 and 4 µm, which will assure passive optical synchronization. The above mentioned seed pulses can be generated by parametric amplification of the white light (WL) generated in a photonic crystal fiber (PCF) or in transparent solids, as well as by difference frequency generation (DFG) in periodically poled (PP) nonlinear optical (NLO) crystals. The project will consist of the following tasks: i) generation and characterization of WL; ii) generation and characterization of DFG in PP NLO crystal; iii) amplification of generated WL in an OPA; iv) characterization of the performance of the OPA. Audrius Pugzlys
3

Ultrabroadband mid-IR pulse characterization: methods and materials

The mid-infrared (mid-IR, 3-10 μm) spectral region is of great interest for ultrafast spectroscopic studies and high-field physics applications. During the work student will overview different techniques of optical pulse characterization providing information about the electrical field envelope and phase of mid-IR pulses. In order to prove applicability of certain characterization methods and nonlinear optical materials, simulations of response of different techniques for given input parameters will be done. For the “excellent” grade, the student is expected to do experimental characterization of ultrashort mid-IR pulses. Audrius Pugzlys